Giving Compass' Take:

• Kelsey Piper explains on Vox why DNA-printing, a critical advancement in the field of science, needs a stronger contingency plan against potential disaster.

• Would better screening improve public support for other impactful scientific advancements? How can you contribute to protective improvements? 

• Interested in furthering scientific advancement? Start here.


In the past few years, something new has become possible in biology: cheaply “printing” DNA for insertion into a cell.

That means a scientist who needs a particular DNA sequence to, say, create new bacteria for research can now order that DNA sequence from a lab. In labs around the world, tons of critically important, valuable biology research is advancing thanks to DNA synthesis, and things look likely to get even better as DNA synthesis gets even cheaper.

But as is often the case when a scientific field gets a lot better at what it does very quickly, progress in DNA synthesis has been so fast that coordination against bad actors has lagged.

Some companies — including most industry-leading ones — do follow US guidelines that require a background check and also check the DNA sequence against a list of known hazardous ones and would stop me from making this dangerous order — but a recent report found no evidence of any laws requiring laboratories to follow those guidelines in any country in the world. Doing so adds some time and expense to the ordering process, so there is some incentive to cut corners.

So new screening — and new regulations backing the international use of that screening — is needed. The aim of a new screening regime should be to ensure that requests for DNA are checked to determine whether they contain prohibited, dangerous sequences, without adding too much to the expense of screening and without slowing down legitimate researchers, who should be able to access DNA for their projects cheaply and quickly.

Read the full article about why DNA-printing needs better screening by Kelsey Piper at Vox.