Giving Compass' Take:

• Ashley Stumvoll explains how shifting to 100 percent renewable energy would create demand for minerals that could lead to environmental degradation. 

• How can funders help to support research and development of increasingly clean energy? 

• Read more about different types of clean energy technologies


Climate change has widely reported negative consequences, including exacerbating severe weather patterns, harming wildlife, and potentially worsening human conflict and migration.

In an attempt to minimize these planetary changes, the Paris Agreement set the ambitious goal of limiting global warming to 1.5 degrees Celsius (2.7 degrees Fahrenheit) above pre-industrial levels by reducing greenhouse gas emissions. Innovations in renewable energy technologies like wind and solar power, along with electric vehicles (EVs), will be essential to hitting these goals. But according to experts, the long-awaited move to a fossil fuel-free economy will not come without its own set of issues.

"The transition toward a renewable energy and transport system requires a complex mix of metals—such as copper, cobalt, nickel, rare earths, lithium, and silver—many of which have only previously been mined in small amounts," says a recent report commissioned by Earthworks, an environmental non-profit that promotes sustainable solutions to the impacts of mineral and energy development.

The report, compiled by a research team from the University of Technology Sydney's (UTS) Institute for Sustainable Futures (ISF), details issues in the supply chains of 14 minerals used in renewable energy production and use, including batteries for EVs. The researchers modeled demand for these "battery metals" on a scenario where society would use 100 percent renewable energy by 2050—a best-case situation for climate mitigation, but not necessarily for other aspects of the environment if current harmful mining practices continue as the industry standard, according to them.

While the study explores the considerable impacts of such mining on human health and culture, it shows that biodiversity could be under threat too.

"A rapid increase in demand for metals for renewable energy ... could lead to mining of marginal or unconventional resources, which are often in more remote or biodiverse places," said study co-author Elsa Dominish, a senior research consultant at the ISF. In short, some remote wilderness areas have maintained high biodiversity because they haven't yet been disturbed—but neither have their reserves of minerals, making these areas attractive targets for mining companies.

Read the full article about the potential downsides of shifting to renewable energy by Ashley Stumvoll at Pacific Standard.