What is Giving Compass?
We connect donors to learning resources and ways to support community-led solutions. Learn more about us.
Giving Compass' Take:
• Rachel Tompa explains how cancer cells deceive their neighboring cells to protect the cancer cells.
• What are the implications of this effect for cancer treatments and cures?
• Learn how to fund cancer research.
Like tiny con men, cancer cells are adept at tricking healthy parts of the body into doing their dirty work for them. Some tumors build physical walls around themselves by recruiting healthy cells or molecules to do their bidding. Many can trigger the growth of new blood vessels to supply them with energy for their expansion. In some cancers, like certain lung cancers, tumors can actually contain more noncancerous cells than cancer cells.
When we think about a tumor, we usually think about the accumulation of tumor cells. But when we look at these tumors, we have these islands of tumor cells and they are surrounded by immune cells. So there’s a really strong immune reaction to the tumor, but the reaction just hasn’t been the right one to kill the tumor cells.
This “tumor microenvironment” — the noncancerous cells and molecules that are nevertheless an integral part of cancer — also heavily influences whether a treatment will work. Especially, researchers are finding, in the case of immunotherapies.
The cancer cells or other cells tumors recruit to their microenvironment “reach over and hit the snooze button on the T cell,” Pierce said. “The T cell sits there asleep — like sleeping beauty.”
Pembrolizumab and other checkpoint inhibitors in its class work by blocking the T cells’ molecular snooze button, “then they wake up and start killing the tumor,” Pierce said. Before joining the Hutch, Pierce worked at Merck, the pharmaceutical company that developed pembrolizumab, as part of a biomarker-development team, and he led the early efforts to test the drug in the rare skin cancer Merkel cell carcinoma and in a type of lymphoma.
“When we think about a tumor, we usually think about the accumulation of tumor cells,” she said. “But when we look at these tumors, we have these islands of tumor cells and they are surrounded by immune cells. So there’s a really strong immune reaction to the tumor, but the reaction just hasn’t been the right one to kill the tumor cells.”
Read the full article about cancer cells' deception by Rachel Tompa at Fred Hutchinson Cancer Research Center.