Giving Compass' Take:

• Brandie Jefferson explains how a new type of fuel cell with a unique pH-gradient-enabled microscale bipolar interface could power modes transportation including drones. 

• How can funders work to help advance this type of technology? 

• Learn how to find and fund scientific research


A new high-power fuel cell operates at double the voltage of today’s commercial fuel cells, according to new research.

The transportation industry is one of the largest consumers of energy in the US economy, and there is increasing demand to make it cleaner and more efficient. While more people are using electric cars, designing electric-powered planes, ships, and submarines is much harder due to power and energy requirements.

Researchers have developed a direct borohydride fuel cell that advances technology in this area. This advancement using a unique pH-gradient-enabled microscale bipolar interface (PMBI) could power a variety of transportation modes—including unpiloted underwater vehicles, drones, and eventually electric aircraft—at significantly lower cost.

“The pH-gradient-enabled microscale bipolar interface is at the heart of this technology,” says Vijay Ramani, professor of energy, environmental, and chemical engineering at Washington University in St. Louis. “It allows us to run this fuel cell with liquid reactants and products in submersibles, in which neutral buoyancy is critical, while also letting us apply it in higher-power applications such as drone flight.”

The fuel cell uses an acidic electrolyte at one electrode and an alkaline electrolyte at the other electrode. Typically, the acid and alkali will quickly react when brought in contact with each other. Ramani says the key breakthrough is the PMBI, which is thinner than a strand of human hair. Using membrane technology, the PMBI can keep the acid and alkali from mixing, forming a sharp pH gradient and enabling the successful operation of this system.

Read the full article about a new fuel cell by Brandie Jefferson at Futurity.