In 1970, more than 300,000 people died when a strong cyclone hit the coast of Bangladesh.1 In 1985, another storm caused 15,000 deaths. Just six years later, another killed 140,000.

Fast-forward to 2020. Bangladesh was hit by cyclone Amphan, one of the strongest storms on record in the Bay of Bengal. The death toll was 26 — barely visible on the chart below, compared to these very deadly disasters.

That’s 26 too many deaths, and the cyclone also caused huge amounts of damage: millions of people were displaced, and there were large economic losses. But tens — possibly hundreds — of thousands of lives were saved through early warnings, evacuations, and increased resilience. People in Bangladesh are much better protected from disasters than they were a few decades ago.

This development is part of a longer-term and widespread success in reducing humanity’s vulnerability to storms, floods, earthquakes, and other hazards.

Three factors determine the risk of damage when a hazard hits.

First, the characteristics of the hazard itself. Is it a flood, drought, hurricane, or heatwave? What’s its magnitude, speed, or power? And how long does it last? Is it a 30-minute downpour or a 5-day deluge of heavy rainfall?

Second, the number of people or the amount of infrastructure exposed to the hazard. Does the earthquake strike a densely populated city or a rural area? How many people live on a coastline inundated by storm surges or sea level rise? How much stuff — buildings, bridges, roads, and other infrastructure — is in harm’s way?

Third and finally, the vulnerability of those who are exposed. A heatwave in Dubai will be less harmful than one in New Delhi because most people in Dubai have air conditioning. A strong earthquake in a country with quake-resistant infrastructure will be less damaging than the one that struck Haiti in 2010. Vulnerability is often strongly linked to income: poorer countries and communities tend to have fewer resources to protect themselves and respond afterward.
Over the last century, we have outpaced the impacts of climate change on natural disasters. Deaths have fallen despite climate change because we’ve built more resilient societies.

Think of it like being in a race. Climate change has been jogging while we’ve been running. We’ve mostly stayed ahead, but there is no guarantee that things will stay that way. Slow down, and we’ll be overtaken. Stay at the same pace, and we’ll probably still be overtaken as the impacts of climate change accelerate.

If we fail to invest in protection measures and development trends slow down, then the progress we’ve made over the last century could easily reverse, and disaster deaths could start to rise again.

What’s key, though, is that the direction of that trend — a continued fall or a reversal — is up to us.

None of this will happen on its own. Bangladesh’s success was driven by local communities and investment in early warning systems. Chile and Japan’s resilience to earthquakes came from architects, engineers, and governments upholding strict building standards. The dramatic decline in famine came from technological revolutions in agriculture and populations pushing for political rights and accountability.

International cooperation and support will be needed to ensure that the poorest and most vulnerable are not left behind.

Read the full article about disaster resilience by Hannah Ritchie at Our World in Data.