Giving Compass' Take:

· Sierra Garcia reports that a new process has been discovered at Rice University that can transform garbage into graphene, a nanomaterial with great potential to cut carbon emissions. 

· What are the appealing qualities of graphene?  What can it be used for?  

· Check out this new carbon capture technology with the ability to such CO2 from the air


For more than a thousand years, humans have dreamed of transforming a worthless substance (lead) into something precious (gold). But in the 21st century, the mythical philosophers’ stone might produce not gold, but graphene, a two-dimensional carbon nanomaterial with so many industrial uses that it’s more valuable by weight than the 24 karat stuff. And that transformation may no longer be a fantasy. Researchers at Rice University have devised a technique that seems akin to modern-day alchemy for making graphene from garbage.

Since graphene was discovered in 2004, demand for the material has skyrocketedthanks to its remarkable physical qualities. With its single layer of carbon atoms, graphene is at least 100 times stronger than steel, ultra-light, as stretchy as rubber, and the best heat conductor in the world. But the supply of graphene has been limited by the painstaking processes used for producing it in the lab, from expensive chemical reactions to grinding away at layers of graphite — yes, the stuff from pencils —on the atomic level.

The new study shows that a split-second, ultra-hot flash of electricity focused on any item containing carbon — say, an old sandwich, a plastic water bottle, or a worn out rubber tire — can also produce graphene by forcing all the other elements to escape as gases, leaving behind only a two-dimensional, ultra-strong carbon lattice. The burst of energy that heats up the item to over 5000 degrees F is so precisely concentrated that making a pound of this “flash graphene” would only use the same amount of energy as running a typical dishwasher for half an hour.

James Tour, one of the study’s authors, explains that transforming the carbon found in food or trash into graphene keeps that carbon from reentering the atmosphere as the items decompose. “We bring up a lot of assets from under the ground, a lot of carbon in the form of coal, oil, and gas … [and] that carbon becomes part of our world,” he said. “But when you make graphene, it’s fixed. It doesn’t enter the carbon cycle again.”

The idea of turning waste into graphene isn’t new, but this is the first time researchers have made the transformation a reality. If the flash graphene method can be scaled up, the discovery could transform graphene from a luxury material hiding in laboratories and some niche products into a common component in a wide variety of industries, including medicine, buildings, batteries, and electronics.

Read the full article about this new ultra-strong nanomaterial by Sierra Garcia at Grist.